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Abstract
Research in the psychosis prodrome using neuroimaging techniques has been

applied in classification of patients along the psychosis spectrum (Koutsouleris et

al., 2009), or distinguishing schizophrenia (SZ) from other psychiatric disorders

(Calhoun et al., 2008) and healthy controls (Rathi et al., 2010) or predicting the rate

of transition (Fusar-Poli et al., 2011; Koutsouleris et al., 2011). Functional outcome

which includes social and role functioning is a vital component of psychosis

recovery that has so far been largely underrepresented in comparison to transition

to psychosis and has been limited to application of univariate methods. Clinical

high risk (CHR) patients that do not transition to the full illness continue to have

impairments in functioning, making it difficult for them to be independent and

integrating into society.

In recent studies, the psychosis research community has shifted their focus from

univariate methods to multivariate pattern analysis (MVPA) because of its capacity

to make inferences at a single-subject level, their ability to inspect patterns of

activity across voxels throughout the brain and work seamlessly with massive

datasets. We employed Support Vector Machine (SVM), a linear machine learning

classification algorithm embedded in a pooled nested double cross-validation

scheme. Baseline (T0) resting state functional connectivities (rsFC) between 160

regions of interest (ROI) was used to classify functional outcome in CHR patients.

Our cohort of 76 CHR subjects were recruited from seven different sites across

Europe and were then divided into ‘Good’(N = 37, GF Social > 7) and ‘Poor’(N =

39, GF Social ≤ 7) groups.

The rsFC classifier was applied with a generalizability mask (Gmask) to control for

site effects and was able to discriminate between the groups with a balanced

accuracy of 68%, specificity at 71.8% and sensitivity of 64.9%. The most predictive
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functional connectivities were present between the right inferior parietal lobule

(IPL) and the right ventromedial prefrontal cortex (vmPFC). Other connectivities

implicated regions such as the anterior insula, angular gyrus and dorsolateral

prefrontal cortex (dlPFC). These regions are involved in social cognition, language

and processing emotional information (Nierenberg et al., 2005; Wylie &Tregellas

2010), domains that are associated with social functioning .There were no

significant correlations between the decision scores and clinical symptoms as

measured by the positive and negative symptom scale (PANSS). The study shows

that social outcome in CHR can be predicted with rsFC using MVPA.
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TABLE 1: List of important abbreviations found in the paper

Abbreviation Full form
ACC Anterior cingulate cortex (ACC)
APS Attenuated Psychotic Symptoms
BAC Balanced Accuracy
BDI Beck’s Depression Inventory
BLIPS Brief Limited Intermittent Psychotic Symptoms
BOLD Blood Oxygen Level Dependent
CHR Clinical High Risk
COGDIS Cognitive Disturbances
CSF Cerebrospinal fluid
CV Cross Validation
dlPFC dorsolateral prefrontal cortex
DMN Default Mode Network
DTI Diffusion Tensor Imaging
EEG Electroencephalography
EPI Echo Planar Imaging
EPOS European Prediction of Psychosis Study
FC Functional connectivity
FD Framewise Displacement
FU Follow-up
fMRI functional Magnetic Resonance Imaging
FPN Frontoparietal Network
GAF Global Assessment of Functioning
GF Global Functioning
GM Gray Matter
HC Healthy Controls
IPL Inferior Parietal Lobule
ML Machine Learning
mPFC medial prefrontal cortex
MRI Magnetic Resonance Imaging
MVPA Multivariate Pattern Analysis
NAPLS North American Prodrome Longitudinal Study
PANSS Positive and Negative Syndrome Scale
PET Positron Emission Tomography
PRONIA Personalized Prognostic Tools for Early Psychosis Management
ROI Region of Interest
rsfMRI resting state Magnetic Resonance Imaging
rsFC resting state functional connectivity
sMRI structural Magnetic Resonance Imaging
SN Salience Networ
SZ Schizophrenia
SVC Support Vector Clustering
SVM Support Vector Machine
SVR Support Vector Regression
UHR Ultra High Risk
VBM Voxel Based Morphometry
vmPFC ventromedial prefrontal cortex
WM White Matter
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Chapter 1

Introduction

1.1 Prologue

The onset of psychosis is now known to be preceeded by a pre-psychotic or prodro-

mal phase and individuals within this pre-psychotic phase are referred to as CHR.

The CHR cohort has been found to present with deficits that are already present in

individuals with SZ, and include impairments in social and occupational function-

ing (combined referred to as functional outcome) in addition to deficits in cognitive

abilities (Addington & Addington 2005; Simon et al., 2006; Fusar-Poli et al., 2011, de

Paula et al., 2015). CHR individuals that do not transition to full psychosis continue

to have lower levels of functioning as compared to healthy controls (HC) and only

moderately better functioning as compared to individuals with psychosis (Adding-

ton et al., 2011; Fusar-Poli et al., 2015). The functioning impairments lead to a com-

promised quality of life and to a higher probability of suicide, social alienation and

unemployment (Power et al., 2003). The societal costs and the affected quality of life

of CHR patients has resulted in an increase in research investigating their function-

ing outcome. This has proven to be a challenge because later outcome in functioning

depends on an individual’s symptoms and can be influenced by various other fac-

tors differing between patients. These factors include functioning prior to illness
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(Barajas et al., 2013), duration of illness and medication (Keshavan et al., 2003; Qin

et al., 2014; Perkins et al., 2015; Zhang et al., 2018) making it difficult for researchers

to find patterns that would help predict a patient’s outcome in the future. Neu-

roimaging methods are largely being used to identify potential biomarkers which

will aid in the assessment and diagnoses of patients. Clinical assessments alone are

not reliable predictors of the illness trajectory of a patient and their future outcome.

Biomarkers have the potential to be more efficient at identifying subgroups of a pa-

tient population at first presentation itself. Neuroimaging methods in combination

with MVPA using machine learning (ML) are progressing further in order to iden-

tify potential biomarkers that would allow for a more subject specific prediction of

functioning.

1.2 The Clinical High Risk in Psychosis

The idea of psychosis has moved from a narrow and strict concept and evolved into

being understood as a continuum or a spectrum. This means that the psychosis

expression is now considered not as an all-or-none phenomenon, but rather phe-

nomenologically and temporally continuous across the general population (Gulok-

suz & Os., 2018). Based on this the notion of a pre-psychotic, at-risk or prodromal

stage has emerged. The earliest definitions of a prodome in psychosis described it

as, "a heterogeneous group of behaviours temporally related to the onset of psy-

chosis" (Keith and Matthews 1991, p.53) or a period from first noticeable symptoms

to first prominent psychotic symptoms (Beiser et al., 1993).

Due to the heterogeneity in inclusion criterion, the prodromal phase is now re-

ferred to by the terms CHR or as ‘Ultra-High Risk ’(UHR) (Fusar-Poli et al., 2013).

Thought the terms are used interchangeably there are some differences between the
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two. For UHR, inclusion requires one or more of the following criterions: i) Attenu-

ated Psychotic Symptoms (APS), ii) Brief Limited Intermittent Psychotic Symptoms

(BLIPS) and iii) Trait and state risk factor i.e., with a first degree relative with a

psychosis disorder and a significant decrease in functioning (Genetic High Risk),

or Schizotypal personality disorder (Yung & McGorry., 2007; Fusar-Poli et al., 2013)

and represents a subgroup of at risk patients that are closest to manifesting psy-

chosis (Simon et al., 2006). The CHR takes into account the basic symptoms (COGDIS),

which are associated with the emergence of psychosis and known capture symp-

tomatic expression underlying neurobiological processes of CHR (Schultze-Lutter &

Theodoridou, 2017). COGDIS symptoms include impairments in domains such as

attention, perception and thought content (Klosterkötter et al., 2001; Schultze-Lutter

et al., 2008).

The earliest known examination of the CHR group was done by Häfner et al.,

(1998), which revealed that in over 70% of the patients, the disease is preceded by

a pre-psychotic phase (Riecher-Roesser et al., 2007; Fusar-Poli et al., 2013). Recent

findings state that approximately 18-36% of CHR individuals transition to a full psy-

chosis (Tognin et al., 2013) and recent work estimates a prevalence of approximately

4% to 8% for psychotic symptoms or psychotic-like experiences in the general pop-

ulation (Fusar-Poli et al., 2013; Klosterkötter et al., 2001). The risk of developing

psychosis in the CHR group is 20% over a period of twoyears (Fusar-Poli et al.,

2016). Even within the group of CHR patients, the prevalence varies depending on

the diagnosis. Monozygotic twins have a 40-50% concordance rate for the illness

over lifetime (Tsuang et al., 2002) and first-degree relatives of SZ patients have ap-

proximately a 10-fold increased risk for later illness compared to non-relatives over

lifetime (Chang et al., 2002).

As mentioned above, considerable impairments in academic performance and
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occupational functioning along with the presence of other co-morbid illnesses (Fusar-

Poli et al., 2012) together with difficulties in interpersonal relationships are often

observed (Bechdolf et al., 2005; Ruhrmann et al., 2008). The CHR group offers the

chance for early treatment of psychotic disorders and henceforth their timely man-

agement and may also prove to be relevant for detection of relapse and for prognosis

(Fusar-Poli et al., 2013; McGorry et al., 2013). A delay in treatment has been associ-

ated with a lower rate of remission and/or a longer time to remission of symptoms

(Gonszales-Valderrama et al 2015). Studying the CHR population offers an insight

into the early stages of the disease without medication and other factors such as

duration or chronicity as confounds. Simultaneously, allowing researchers to also

build interventions that could be made available at this stage and delay or poten-

tially avoid the onset of the disease. (Tognin et al., 2014). Using rsFC and related

neuroimaging techniques to predict the functional outcome that leads to a high risk

stage will help us understand the factors that play a role in increasing an individ-

ual’s risk for psychosis.

These urgencies have led to the execution of large multisite investigations into

the early phase of psychosis such as the North American Prodrome Longitudinal

Study (NAPLS 1-3, 2003- Ongoing), the European Prediction of Psychosis Study

(EPOS, 2001 - 2005) and the Personalised Prognostic Tools for Early Psychosis Man-

agement (PRONIA, 2013-Ongoing). These projects are trying to elucidate the predic-

tors of psychosis, evaluate the CHR definition criterion and develop interventions

and prognostic tools.Results from the NAPLS study showed increased risk for psy-

chosis over time in the CHR population (Addington, 2012). Impairments in social

cognition and in global neuropsychological functioning (Barbato et al., 2015) were

also found. Recently, a risk calculator was developed (Fusar-Poli et al., 2017, 2018) to

identify CHR patients and support transdiagnostic prediction of psychosis.This may
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eventually lead to the implementation of an individualized prevention plan focused

on improvement of outcomes. These studies used clinical data for their investiga-

tions and predictions. F involving neuroimaging methods are further developed in

Section 1.4.

1.3 Neuroimaging in CHR

The use of neuropsychological and neurobiological methods are an important as-

pect of the ongoing research especially for detection and development of mark-

ers. Neuroimaging, (especially the various MRI) techniques such as structural MRI

(sMRI) , functional MRI (fMRI), rsfMRI as well as electroencephalography (EEG)

and positron emission tomography (PET) are widely used.

Using sMRI, GM reductions have been found in frontal, lateral temporal and

medial temporal regions in CHR patients (Meisenzahl et al., 2008) which have spe-

cific patterns related to symptoms. Changes in temporal and prefrontal areas have

been found to be associated with disorganized symptoms. Positive symptoms were

found to be related to alterations in perisylvian regions and the thalamus whilst

negative symptoms were linked to areas within the frontal, temporal as well as lim-

bic and subcortical structures (Koutsouleris et al., 2009). CHR subjects show further

abnormalities in the parietal lobe, superior temporal, and insula in comparison to

those only with a genetic risk (Smieskova et al., 2013). Changes in GM volume are

specific to and differ between different psychotic illnesses and hence can be a vital

addition to predict and differentiate between diagnostic categories as well.

Using fMRI, disruptions have been generally found in frontal and striatal areas

(Morey et al., 2005), the prefrontal areas (Fusar-Poli et al., 2011), fronto-temporal-

parietal areas (Smieskova et al., 2012) and fronto-thalamic-cerebellar network (Whal-

ley et al., 2004). These alteration in brain functions have also been found to be



6 Chapter 1. Introduction

directly related to structural abnormalities, specifically in the left middle frontal

gyrus (Fusar-Poli et al., 2011). Hence, previous research has found various impair-

ments and alterations across the brain in the CHR group. These findings are not

always consistent, but importantly illustrate that CHR already show changes in the

structure and functioning of their brain before the onset of the full illness and these

changes could be precursors to those found in SZ.

1.4 Functional outcome in CHR

A critical feature of the prodromal phase is marked by deterioration in functioning

outcome which is also known to be treatment resistent (Englisch & Zink, 2012).Greater

social impairment, which is an aspect of social functioning was one of the five fea-

tures that contributed to the predictive algorithm that was developed in the NAPLS

1 study (Cannon et al., 2008). Impairments in functional outcomr reduces indepen-

dence, lowers productivity, and affects not only the individual but also the society

at large. This provides a further need for understanding the factors leading to later

outcome in psychosis as well as early intervention targeting social and occupational

functioning. Additionally, as a large number of CHR individuals do not transit to a

severe case of psychosis, being able to identify and predict patients at different risks

for functional impairment will also help in preventing the decrease in quality of life

and accompanying disabilities.

Different methods and factors have been utilized to predict functional outcome

in CHR cohorts as well as first-episode or recent onset psychosis patients. Decreased

performance in neurocognitive tests of processing speed and verbal memory along

with basic symptoms such as deficiency in dividing attention, attenuated negative

and general symptoms such as apathy, anhedonia, poor attention, disorientation
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were found to be related to an increased risk for poor outcomes in the future (Car-

rión et al., 2013; Salokangas et al., 2014; Mucci et al., 2016). In first-episode psychosis,

lower functioning scores have been found to be associated with a reduction in grey

matter (GM) volume in prefrontal and cingulate areas and alterations in connectiv-

ity between these areas with subcortical structures (Dazzan et al., 2015). In CHR,

using voxel based morphometry (VBM) a reduction in GM volume in the postcen-

tral gyrus and the anterior cingulate have been shown to be related to self-reported

social impairment (Lincoln & Hooker., 2014), in addition to impairments in frontal

regions, changes in limbic areas and the cerebellum have also been found to be pre-

dictive of functional outcome (Reniers et al., 2017).

Functional imaging studies using verbal fluency tasks have found an increase

in activation in the frontal and limbic areas for CHR individuals with poor func-

tional outcome, which may reflect a compensatory response or inefficient cortical

function (Reniers et al., 2014, 2017). Within a group of CHR patients, a fMRI study

using a working memory task found that individuals with a poor outcome showed

alterations in frontal, temporal and striatal regions along with reduced deactivation

within default-mode network (DMN) regions comprising of the posterior cingu-

late cortex, medial prefrontal cortex (mPFC), medial temporal lobe, and the inferior

parietal cortex as compared to those with a good outcome. Other neuroimaging

methods have also been used to explore functioning in both SZ and CHR. Using

Diffusion Tensor Imaging (DTI), SZ patients showed impairments in the fractional

anisotropy (FA) of the inferior longitudinal fasciculus and arcuate fasciculus to be

associated with functional outcome (Behdinan et al., 2015). Similarly, changes in

white matter (WM) integrity in the hippocampus and inferior longitudinal fascicu-

lus was found to be related to functional outcome in CHR individuals (Karlsgodt et

al., 2009).
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The first MVPA study to predict outcomes in CHR populations used a cortical

based pattern classification. Kambeitz-Ilankovic et al., (2015) used SVM to classify

a cohort of CHR patients into either a ’Good’ or a ’Poor’ outcome group also us-

ing the Global Assessment of Functioning (GAF) scale and achieved an accuracy of

82%. Using sociodemographic, clinical and neruocognitive data Koutsouleris et al.

(2016) predicted the functional outcomes at 4 weeks and 52 weeks follow-up (FU)

in first episode psychosis patients with 75% accuracy and with 70% accuracy when

validated across 44 European sites. De Wit et al., (2016) applied Support Vector Re-

gression (SVR) to structural MRI data in CHR adolescents to predict long term clin-

ical and functioning outcome and found a high correlation (r =0.42) between base-

line subcortical volumes and long term functioning. Recently, combining clinical

and neuroanatomical data outcomes were predicted with accuracies of 85.4%/62.7%

(Koutsouleris., 2018). Research using MVPA to predict functional outcome is very

limited, and hence requires further work.

1.5 rs connectivity in CHR

Resting state MRI works on the same haemodynamic principle as fMRI. The prin-

ciple works on the different magnetization properties of oxy- and de-oxygenated

blood (referred to as the blood oxygen level dependent (BOLD) signal) which are

detected in the MR readout signal. These changes in the BOLD signal arise due to

changes in neuronal activity following a change in brain state which may be pro-

duced for example, using a stimulus or task. The main difference is that rs does not

involve a task and it focuses on spontaneous, low frequency fluctuations (<0.1 Hz)

in the BOLD signal (Biswal et al., 1995). Functional connectivity (FC) is defined as

the temporal dependency of neuronal activation patterns of anatomically separated

brain regions.
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Over the last decade, a large body of psychosis studies has combined rsfMRI and

FC for rsFC and examined the statistical dependency between the time series of rs

brain areas (Van Den Heuvel, 2010). rsFC allows for looking at the intrinsic activity

of the brain, unaffected by cognitive or sensory stimulus (Smitha et al., 2017) and

the lack of a task allows patients with difficulty understanding instructions to par-

ticipate. As reported above, psychosis is associated with a range of symptoms and

it is unlikely that these impairments can be explained by abnormalities in specific

areas. The disconnection hypothesis put forth by Friston and Frith in 1995 theorized

that the symptoms of psychosis are better understood in terms of abnormal inter-

actions or integrations between different areas. On a neuronal level, these impair-

ments manifest as abnormal functional connectivities. Investigating the interactions

between brain regions can contribute to understanding large scale communication

in the brain and it can provide information on the role of connectivity in disease

phenotype and endotype.

In chronic SZ an increased connectivity between the left dlPFC and right inferior

frontal gyrus as compared to healthy controls is seen (Liu et al., 2012). Interestingly,

the researchers also found a commonality between chronic SZ patients and their

unaffected siblings, providing evidence that their might already be impairments in

brains of individuals at (genetic) risk for psychosis even without showing symp-

toms. Frontal areas specifically the dlPFC has long been implicated in psychosis

(Dolan et al., 1993). rsFC has helped understand the role of this area in large-scale

systems and has shown that systems that include dLPFC may alter relationships be-

tween systems responsible for other domains of information processing and might

help to explain disparate network-level findings in schizophrenia (Satterthwaite

et al., 2016). In classification studies using MVPA, a reduced FC between fronto-

occipital, fronto-parietal, fronto-temporal and cortico-thalamic and an increased FC
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between the left inferior temporal gyrus and parahippocampal gyrus was highly

predictive in separating SZ from healthy control (Cabral et al., 2016). These alter-

ations have also been linked to clinical symptoms in CHR cohorts (Dandash et al.,

2013; Fornito et al., 2013).

A large scale FC network implicated in SZ is the salience network (SN), which

is important for ascertaining the saliency of stimuli and includes the insula and

regions in the anterior prefrontal cortex and anterior cingulate cortex (Pelletier-

Baldelli et al., 2015). The insula has been found to be activated during emotional ex-

pression and hence as part of the SN may be of relevance for understanding salient

emotional stimuli in an interaction. Pelletier-Baldelli et al., (2015) found poor social

functioning ability associated with the a lower FC between the SN and the visual

cortex for CHR. A deficit in a visual processing would lead to an impairment in in-

terpreting facial emotions and subsequently social cues, which would then lead to

a decrease in social functioning. This provides evidence that FC between seemingly

varied regions of the brain show that lower-level (bottom-up) processes affect higher

level cognitive processes. In prodromal patients disruptions in fronto-temporal con-

nectivity, hyperconnectivity and hypoconnectivity within the DMN regions have

also been discovered (Crossley et al., 2009; Shim et al., 2010). These connectivities

and regions of the DMN, specifically the posterior part of the temporal cortex and

the mPFC are involved in social cognition and emotion (Wible et al., 2009) which

fall under the umbrella of social functioning.

1.6 MVPA and ML methods in CHR

In previous imaging studies of psychosis, classical univariate analysis methods have

been the method of choice. Univariate methods (such as ANOVA, t-tests) detect

group differences in activation and connectivity only within a region or voxel (Sun
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et al., 2009). The limitation of univariate approaches is that they require averaging

across brain areas and hence are unable to capture individual differences. Addition-

ally, this approach is often limited to certain predefined areas (ROI) which do not

allow for patterns of impairments or change to be captured (Zarogiani 2013). Uni-

variate methods are also limited in combining information from high dimensional

MRI data sets and also have difficulties with complex non-linear data. Due to these

drawbacks, univariate methods have limited application in predictive studies. In or-

der to overcome these disadvantages related to univariate methods, there has been

a shift towards applying MVPA using ML techniques.

ML techniques are, "a varied group of statistical methods that automatically de-

termine parameters to reach an optimal solution to a problem rather than being

programmed by a human a priori to deliver a fixed solution" (Dwyer et al., 2018, pg.

94). There are two main types of ML methods, namely, supervised and unsuper-

vised learning (Bishop., 2006). These methods have and are largely being used to

solve either classification or regression problems. Classification problems identify

the category to which a set of observations belong to based on a model built from

labeled training data and regression problems involve predicting a continuous out-

put. The applications of ML in psychiatry and clinical psychology are wide ranging

and they can be used for treatment prediction, diagnosis, prognosis and detection

and monitoring of potential biomarkers (Dwyer et al., 2018). The most widely used

form of ML is supervised learning, where a data set with correct labels is presented

to the computer and the computer then ’trains’ and learns the relationship between

the data and it’s associated labels using a classification algorithm. The ultimate goal

is to be able to correctly predict the labels for each individual data point given a new

dataset.

In neuroimaging, MVPA aims to capture distributed patterns of activity within a
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region in order to assess for example, how a distribution of voxels can differentiate

between specific brain states (Yoon et al., 2008). These methods have been success-

fully used to classify SZ and HC using sMRI (Davatzikos et al. 2005; Sun et al., 2009;

Nieuwenhuis et al., 2012) with accuracies in the range 70 - 86%. sMRI in combina-

tion with MVPA has also been applied to prediction of disease onset (Koutsouleris

et al., 2009, 2011), identification of subgroups (Koutsouleris et al. 2014) and disease

progression (Tognin et al., 2014) among others. Using fMRI data classifying of SZ

and HC has resulted in accuracies in the range 80-90% (Demirci et al., 2008), fMRI

has also been used in prediction of diverse disorders (Honorio et al., 2012) and deter-

mining subgroups within SZ (Yoon et al., 2012). Using resting state MRI in diverse

applications with MVPA, accuracies in the range of 75% to 92% have been found

(Jafri and Calhoun 2006, Shen et al., 2010). rsfMRI has been shown to have higher

accuracy and sensitivity as compared to sMRI (Kambeitz et al., 2015; Cabral et al.,

2016). This along with the aforementioned advantages of rsfMRI, makes it optimal

to use for further research with MVPA and ML methods.

1.7 Hypotheses and Aims

In the current study of a cohort of CHR patients, we use rsFC to predict social out-

come based on Global Functioning (GF) Social scores. The aim was to correctly

classify which of the two social outcome groups i.e, ‘Good ’or ‘Poor’as defined by a

threshold (further details in section 2.1) on the GF Social scale did the patients be-

long to.

In addition, we wanted to highlight the functional connectivities that are most pre-

dictive of discerning the two groups. Based on previous research we expected

widespread connectivities between frontal regions and the rest of the brain specif-

ically with areas responsible for social cognition and processes, for example, the
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insula (Pelletier-Baldelli et al., 2015), the inferior parietal lobule (IPL), the anterior

cingulate cortex (ACC) and also within the prefrontal areas involved in the DMN

such as the mPFC (Brunet-Gouet Decety 2006; Wible et al., 2009).

Lastly, we wanted to determine whether there was a relationship between a pa-

tient’s likelihood of belonging to either of the two social outcome groups and their

symptom severity. This was done by correlating the decision scores from the clas-

sifier with the Positive and Negative Syndrome Scale (PANSS) scores. We expected

to find a relationship between the two as negative and general symptoms have for-

merly been shown to be linked to functioning (Cotter et al., 2014; Meyer et al., 2014;

Schlosser et al., 2015).
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Chapter 2

Methods

2.1 Participants

The population analyzed in the current study are a subset of the PRONIA consor-

tium baseline (T0) cohort as of May 2018 (Table 1.1). PRONIA is a collaboration

project between various European and Australian researchers aiming to develop a

prognostic tool for early psychosis management using machine learning methods.

TABLE 2.1: List of PRONIA Consortium Members

PRONIA Consortium Members
Ludwig-Maximilians-Universität München, University of Munich
Universitäre Psychiatrische Kliniken Basel, University of Basel
Universitätsklinikum Köln, University of Cologne
University of Birmingham
Turun Yliopisto, University of Turku
Universitàdegli Studi di Udine, University of Udine
University of Melbourne
Dynamic Evolution
General Electric Global Research
General Electric Healthcare
Universitàdegli Studi di Milano, University of Milan

The full cohort consisted of 759 patients and included 137 CHR patients collected

from the PRONIA member sites. For the purposes of this analysis, T0 rsFC and

FU outcome data of a total of 76 CHR patients from all 7 sites was used (Table 2.2
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and 2.3). For the analyses, the subjects were separated into groups based on the

GF Social and GF Role values thresholded at 7. Subjects with scores greater than 7

were in the ‘Good ’outcome category and scores equal to or lesser than 7 were in

the ‘Poor ’outcome category. The GAF Disability scores were thresholded at 75 and

values greater than 75 were placed under the ’Good’ outcome category and values

equal to or lesser than 75 were in the ’Poor’ outcome category. These thresholds

were set after calculating the median and average over all subjects, The median and

average for GF Social were 7 and 7.25 respectively, for GF Role they were 6.93 and 7

and lastly for GAF Disability they were 75 and 70.45 respectively.

TABLE 2.2: List of exclusions from original CHR cohort

Exclusion reasons
Preprocessing failure 15
Outliers in normalization homogeneity check 19
Outliers in wavelet despike homogeneity check 1
Outliers in covariate removal homogeneity check 23
Functional outcome scores not available 3
Total 61

Clinical and neurocognitive data are collected across the centres at T0 and subse-

quently at FUs of 9 months (T1) and 18 months (T2). Between these main follow-up

time points, short clinical interval interviews are taken at 3 months (IV3), 6 months

(IV6), 27 months (IV27) and 36 months (IV36) post baseline.

TABLE 2.3: List of subjects and the outcome points for their data

Time point Number of subjects
IV3 1
IV6 14
IV12 0
IV15 0
T1 61
Total 76
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Distribution of subjects across sites is listed in Table A.2 and demographic infor-

mation is detailed below in Table 2.4.

TABLE 2.4: Demographic information for CHR patients based on the
Global Functioning Social outcomes

Baseline Follow-up
Good Poor Good Poor

N 37 39 37 39
Age (mean ± sd) 26.57±5.22 27.38 ± 5.39 26.57±5.22 27.38 ± 5.39
Sex (in %) 51% Females 49% Females 51% Females 49% Females
PANSS Negative (mean ± sd) 10.19± 3.77 15.36 ± 6.59 7.86 ± 1.64 11.81± 4.46
PANSS General (mean ± sd) 27.11 ±8.50 29.61 ± 7.97 18.64±3.54 25.58±7.82
PANSS Positive (mean ± sd) 10.54 ±3.24 10.39 ±2.89 6.46±3.56 8.69±3.78
Beck’s Depression Inventory (BDI) II (mean ± sd) 22.60±12.00 27±12.93 9.06±9.46 19.64±12.00
GAF Symptoms (mean ± sd) 57.76 ±10.70 52.81 ± 9.91 75.08±9.21 60.84±10.35
GAF Disability (mean ± sd) 61.57 ±15.04 52.62 ± 11.52 78.97±7.69 62.35±13.19
GF Social (mean ± sd) 7.03±1.21 5.89±1.17 8.24±0.43 6.31±0.76
GF Role (mean ± sd) 6.68±1.29 5.70±1.22 8.05±0.70 5.87±1.60

2.2 Inclusion and Exclusion criterion

The general inclusion and exclusion criterion for participation in the study are de-

tailed in Table 2.4. Reasons for exclusions in the preprocessing pipeline are present

in Table 2.5

TABLE 2.5: General Inclusion and Exclusion Criterion

Inclusion Criterion
Age between 15-40 years
Language skills sufficient for participation
Sufficient capacity for consent
Exclusion Criterion
IQ below 70
Hearing is not sufficient for neurocognitive testing
Current or present head trauma with loss of consciousness >5 minutes
Current or past known neurological disorder
Current or past known somatic disorder potentially affecting the brain
Current or past alcohol dependency
Current polytoxicomania (poly-dependency) or within the past 6 months
MRI not possible



2.3. Scales 17

For inclusion as a CHR the follow criterion had to be met: i) COGDIS in the

Schizophrenia Proness Instrument-Adult Version Cognitive Disturbance (SPI-A) which

include impairments in attention, speech, thinking (Table A.3) ii) Brief Intermit-

tent Psychotic Symptom Psychosis Risk Syndrome (BLIPS) iii) Attenuated Positive

Symptom Psychosis Risk Syndrome (APS), and/or iv) Genetic Risk and Deteriora-

tion Psychosis Risk Syndrome, defined by a > 30% drop in functioning and a DSM-

IV diagnosis of Schizotypal personality disorder and/or a 1st degree family member

with psychosis in addition to > 30% drop in functioning as measured by GAF.

Exclusion criterion for CHR included i) Antipsychotic medication for > 30 days

(cumulative number of days) at or above minimum dosage in the ‘1st episode psy-

chosis’range of DGPPN S3 Guidelines or ii) Any intake of psychotic medication (i.e.,

independent of duration of intake) within the past 3 months before psychopatho-

logical baseline assessments (including self-ratings and screening assessments) at

or above minimum dosage of the ‘1st episode psychosis’range of DGPPN S3 Guide-

lines

2.3 Scales

2.3.1 Functional outcome scales

Global Assessment of Functioning

GAF is a widely used clinical scale with two specific sub domains namely: symp-

toms and disability. The GAF disability is used to rate the social and occupational

functioning of an individual on a hypothetical continuum ranging from the high-

est of a 100 (extremely high functioning) to the lowest rating 1 (severely impaired).

It was constructed as an overall measure of how patients were functioning (Aas,
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2011). The GAF Symptoms measure psychological functioning that includes symp-

tom type and severity. Refer to section A.2 for further information.

Global Functioning scales

The GF Role and GF Social scales were developed during the NAPLS Phase 1 along

the lines of the GAF and in order to fill the gaps that were left by other scales aiming

to measure the same features. It separates social and role functioning in order to

measure uneven functioning in different domains and was appropriate to use for

prodromal patients among other advantages (Cornblatt et al., 2007). The GF So-

cial scale assesses aspects of social functioning such as, peer relationships and con-

flicts, involvement with family and age appropriate intimate relationships. The GF

Role scale assesses aspects of role functioning including type of age appropriate role

(school/work/homemaking), quality of role (demands of the role) , performance in

the specified role. It places emphasis on the appropriate level of accomplishments

and independence in the role.

2.3.2 Symptom scale

Positive and Negative Symptom Scale

PANSS is clinical interview scale used for measuring the severity of positive and

negative symptoms commonly associated with SZ (Kay et al., 1987). It consists of

seven measures of positive symptom which include delusions, conceptual disorga-

nization and grandiosity among others and seven measures of negative symptoms

that include blunted affect, social withdrawal and poor rapport. Sixteen additional

items measuring general psychopathology are also measured which take into ac-

count somatic concern, anxiety, disorientation and poor attention.
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A list of other important clinical assessments used are detailed under section A.2

and a full list of the observer ratings and self ratings used in PRONIA are listed in

Table A.2

2.4 MRI acquisition

All MRI images were obtained from a 3T Philips Ingenia scanner with a 32 channel

radio-frequency coil in the Department of Radiology within the Ludwig-Maximilians-

Universität clinic.

2.4.1 Structural Image acquisition

Anatomical images were obtained using a T1-weighted MPRAGE sequence (flip an-

gle 8◦, TE= 5.4, TR = 9.4). Each volume of consisted of 190 sagittal slices (FOV = 240

x 248,Matrix size = 256 x 256, Voxel size = 1x1x1mm).

2.4.2 Functional Image acquisition

Functional images were acquired using an echo planar imaging (EPI) sequence in 53

transverse slices of 3mm thickness (TE = 30,TR = 3000, flip angle = 30◦, FOV = 230

x230, Matrix size = 78 x78, Voxel size = 3x3x3mm).

2.5 Image preprocessing pipeline

2.5.1 Structural Image Preprocessing

The anatomical images were preprocessed using the CAT12 toolbox 1 and consisted

of the following steps: i) A denoising step based on Spatially Adaptive Non-Local
1://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf
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Means (SANLM) filtering. ii) An Adaptive Maximum A Posteriori (AMAP) segmen-

tation technique, which models local variations of intensity distributions as slowly

varying spatial functions and thus achieves a homogeneous segmentation across

cortical and subcortical structures. iii) A 2nd denoising step using Markov Random

Field approach which incorporates spatial prior information of adjacent voxels into

the segmentation estimation generated by AMAP. iv) A Local Adaptive Segmen-

tation (LAS) step, which adjusts the images for WM inhomogeneities and varying

GM intensities caused by differing iron content in e.g. cortical and subcortical struc-

tures. The LAS step is carried out before the final AMAP segmentation. v) A Partial

Volume Segmentation algorithm that is capable of modelling tissues with intensities

between GM and WM, as well as GM and cerebrospinal fluid (CSF) and is applied

to the AMAP-generated tissue segments. Lastly, a high-dimensional DARTEL reg-

istration of the images to the CAT12 Template 6 was done and individual flow fields

were also generated. As a consequence,a normalized anatomical image was created

which was to be later used for the fMRI preprocessing pipeline.

2.5.2 Functional Image Preprocessing

The rsfMRI images preprocessing pipeline was based on Patel et al., (2014) and in-

cluded the following steps: i) The first 8 volumes for each participant were dis-

carded in order to allow the scanner gradients to stabilize and the tissue to reach the

necessary level of excitation ii) Slice time correction, in order to adjust for tempo-

ral variations in slice acquisition. iii) Realignment i.e, rigid-body head movement

corrections to the first volume was applied in order to obtain the 6 motion param-

eters. These parameters were then used to calculate the Framewise Displacement

(FD) value, defined as the sum of the absolute derivates of the 6 motion parame-

ters representing 3 planes of translation and 3 planes of rotation (Patel et al., 2012).



2.5. Image preprocessing pipeline 21

FD thresholds (set at >=38.5% ) were used as exclusion criterion for subjects. iv)

Co-registration of the normalized T1-weighted anatomical image to the realigned

images, resulting in the generation of new re-sliced images. Following this, defor-

mations using the individualized flow fields generated in the sMRI preprocessing

were applied to these re-sliced images. v) Normalization of the images into the stan-

dard Montreal Neurological Institute (MNI) template vi) GM mask from each indi-

vidual was applied to the functional image in order to ensure that only GM func-

tional connectivities were extracted later. vii) Spatial smoothing with a 6mm kernel.

viii) Wavelet despiking to identify non-stationary events caused by motion, using a

wavelet based approach which can detect spikes by providing multi-frequency in-

formation present in a signal. Through this, it is hence able to accommodate spatial

and temporal heterogeneity of motion artifacts and remove a range of frequency

artifacts related to movements from the fMRI time series. ix) Regressing out covari-

ates, which included the values obtained by calculating the Friston 24-parameter

model of our time series. The Friston 24-paramater includes 6 current motion pa-

rameters, 6 motion parameters from the previous time-point and a square of each of

these, accounting for a total of 24. Using this approach removes effects of movement

related artifacts that may be present even after realignment (Friston et al., 1996). In

addition, the CSF signal and WM residual signal was also regressed out. x) Detrend-

ing and applying a temporal Fourier filter (0.01 < f < 0.08) (Figure 2.1).

Then, the brain was parcellated into 160 Dosenbach ROIs (Dosenbach et al., 2010)

and following this a FC matrix for each subject was obtained by correlating average

time series between each ROI. Steps i) to vii) were performed in Statistical Paramet-

ric Mapping (SPM) 12 software package (Wellcome Trust Centre for Neuroimaging,

2014) and Steps ix) and x) were performed in the RESTplus (V1.2) toolbox (Song et

al., 2011). Wavelet despiking was performed in the BrainWavelet toolbox (Patel et
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al., 2014). All of the packages and toolboxes were run in MATLAB and Statistics

Toolbox (2015b).

FIGURE 2.1: Illustration of the rfMRI preprocessing pipeline

2.6 MVPA analysis using Support Vector Machine

SVM is a type of supervised classification algorithm. More specifically, SVM is a

parametric model allowing users to deal with a large set of features whilst bound-

ing the complexity of the model (Maini, 2017). It is used for determining the class of

a data point within a margin-based statistical framework (James et al., 2015). SVM

aims to separate the data set into the two categories by finding a separating line (in

2D) or a hyperplane (in multi-dimensional space). It maximizes the margin defined

by it’s position with respect to certain data points which are nearest to either side of

the line, referred to as ‘support vectors ’(Figure 2.2). The main steps of the method

include training the classifier, testing it and lastly evaluating the it’s performance
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(Orrú et al., 2012). Data is input as features, which have to be transformed from

their raw state in order to be able to accepted as features by SVM. Following this,

the next step is feature selection wherein only a subset of all features are selected, in

order to facilitate learning or to remove features that may be redundant. Feature se-

lection aids in the development of a model by reducing computational load, makes

interpretation of the model easier and increases the classifier’s ability to discrimi-

nate between classes. After this initial step, the data is split into training and testing

sets, in the which the algorithm computes the hyperplane i.e., learns to discriminate

between classes in the training set and then predicts labels for the groups in the

testing set. An important aim of predictive models is generalizability, which is the

extent to which a statistical model generated in one group performs accurately in

new groups or individuals (Dwyer et al., 2018). One way to achieve generalizability

is by building a more robust model by means of cross-validation (CV) techniques.

The simplest CV scheme is leave-one-out which works by breaking the data into K

partitions or folds, and one fold acts as the test data and K-1 folds of the remaining

data is used as training. This reiterates over each fold allowing each case to act as

test and as training data. This helps to avoid overfitting of the model and hence in

computing an unbiased estimation of generalizability (Orrû et al., 2012). CV also

computes C, a regularization parameter that adds a penalty term into the loss func-

tion which measures the inaccuracy of our model. This penalty is added for building

a model that assigns too much explanatory power to any one feature or allows too

many features to be taken into account. (Maini, 2017). As a final step, the model’s

performance is evaluated using the specificity, sensitivity and accuracy measures.

• Specificity is the proportion of actual amount of negative cases (control subjects

correctly identified as controls) that were correctly classified, and is calculated

using TN
(TN+FP) ,



24 Chapter 2. Methods

where TN is the True Negative rate and FP is the False Positive rate

• Sensitivity is the proportion of truly positive cases (individuals with the disease

correctly identified as having the disease) that were correctly classified and is

calculated using TP
(TP+FN)

,

where TP is the True Positive rate and FN is the false negative rate.

• Accuracy, which is an overall measure of correct classifications and is com-

puted using TP+TN
(TP+FN+TN+FP)

FIGURE 2.2: Illustration of a Support Vector Machine

2.7 Steps of the analysis

For the current analysis we used the in-house pattern recognition software

NeuroMiner (NM) 2. Our predictor variable, or set of features was a 76 x12720

matrix, consisting of 12720 resting state functional correlations between the 160

Dosenbach ROIs for each of our 76 subjects. The labels assigned to each of the

data classes were GF Social, GF Role and GAF Disability values. The basic

2https://www.pronia.eu/fileadmin/websites/pronia/Neurominer/neurominermanualv1.pd f
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preprocessing pipeline applied to the features was as follows, i) Pruning the

data and removing non-informative features. ii) Dimensionality reduction us-

ing Principal Component Analysis (PCA) explaining 80% of the variance , iii)

Scaling the data across the matrix between (0,1). Our preprocessing pipeline

was embedded into a nested double CV scheme (Figure 2.3) which works as

follows: there are two loops, an inner CV loop where an unbiased model is

constructed based on the training data and an outer CV loop where the per-

formance of the winning mode from the inner loop is measured on the testing

data. We applied 10 permutations of 5 folds (10x5) in each of the two loops, to

get a total of 50 models each.

FIGURE 2.3: Illustration of the nested double cross validation scheme
applied in NeuroMiner. (Dwyer et al., 2017, p. 27)
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FIGURE 2.4: Illustration of the steps of the current analysis

The data were trained using LIBSVM 3.1.2 (Change and Lin, 2011) with L1-Loss

support vector clustering (SVC) and using a linear kernel. Finally, the classifier

was visualized in NM.

2.7.1 Correlation with PANSS

Decision scores, based on our rsFC classifier were extracted from NeuroMiner.

These scores represent the distance of a data point (in our case a subject) from

the decision boundary based on their functional outcome i.e., the likelihood of

a subject being classified as good or poor. These decision scores were correlated

with each of PANSS subscores using Pearson’s r.
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2.8 Site Effect Correction

The 76 participants that made up the final dataset came from 7 different sites

and hence were vulnerable to various site influences such as rater bias and

scanner effects. In order to control for these effects, we applied two different

site corrections namely, i) Partial correlations between the rs features and scan-

ner sites and ii) Making a generalization mask of the 12720 features using trav-

eller’s data from all sites based on Cronbach et al., (1963) and Mushquash and

O’Connor (2006). They were then incorporated into the basic preprocessing

pipeline mentioned above.

2.8.1 Partial correlation between the rs features and scanner

sites: Site as a covariate

A vector of size 76 containing the list of sites matched to each of our partici-

pants was input as a covariate in NM and was regressed out as an additional

step in our preprocessing pipeline. The fundamental reason for including site

as a covariate is to accurately separately our classes without the confounding

factor of sites. The step was added after the pruning and before PCA.

2.8.2 Generalizability Theory Mask

Generalizability theory (Gtheory) was first introduced by Cronbach et al., (1963)

and is used for determining the reliability of a measure. Gtheory compares

the sources of error in a metric along with estimating the variance contributed

by each source. iT provides estimates of the variance associated with inter-

actions between the various sources (Mushquash O’Connor, 2006). Based on

the scripts for implementing Gtheory in MATLAB provided by Mushquash



28 Chapter 2. Methods

and O’Connor, 2006 and using rsFC data from 5 travelling subjects (who were

scanned at each of the seven sites) a mask of 1x12720 features (Gmask) was

made.

This was then input as an external mask in NeuroMiner with a soft threshold

set at 15%, 25% , 50% and 75%. The aim of the Gmask is to remove any spurious

correlations that may arise due to the site effect. The step was added before

pruning the data.
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Results

3.1 Demographic and participant information

There was no significant difference between the two groups at T0 or FU in age

and sex. At T0, PANSS Negative was significantly higher for the Poor group

(t(74) = -3.603, p < 0.001) and GF Social was significantly lower (t(74)= 4.181, p

< 0.001). GAF Symptoms (t(74) = 2.134), GAF Disability (t(74) = 2.977) and GF

Role (t(74) =3.114) were all significantly lower for the Poor group at p < 0.05. At

FU, PANSS Negative (t(74)= -4.517) and General (t(74) = -4.194) along with BDI

(t(74) =-4.015) scores were significantly higher for the Poor group (p < 0.001)

along with PANSS Positive at (t(74) = -2.647, p < 0.05). GAF Symptoms (6.318),

GAF Disability (t(74) = 6.662), GF Social (t(74) = 13.445) and GF Role (t(74) =

7.652) scores were significantly lower for the Poor group (p < 0.001).

The percentage of subjects having a co-morbid DSM-IV diagnosis at baseline

was 72.36% (N = 55). Table 3.1 lists the different co-morbid diagnoses for the

current study cohort. At baseline, 26.31% (N=20) subjects fulfilled the COGDIS

criterion, 67.10% (N=51) subjects fulfilled the APS criterion, 3.7% (N=3) fulfilled

the BLIPS criterion and 2.63% (N=2) fulfilled the APS and genetic risk criterion.

There were no transition cases present at FU.
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TABLE 3.1: List of co-morbid diagnoses of CHR patients as measured
by the Structured Interview for DSM IV (SCID)

SCID Diagnoses
Bipolar I Disorder 1
Bipolar II Disorder 1
Other Bipolar Disorder 1
Major Depressive Disorder (MDD) 30
Dysthymic disorder 2
Depressive disorder not otherwise specified 3
Substance Use Disorder 1
Schizophrenia (SZ) 3
Social phobia 1
Obsessive Compulsive Disorder (OCD) 3
Generalized anxiety 1
Panic disorder 1
Anxiety Disorder not otherwise specified 1
Somatization disorder 1
Body Dysmorphic Disorder 1
Adjustment disorder 2
Dissociative disorder 2
None 11

3.2 SVM results

3.2.1 GF Social Results

The classifier achieved a balanced accuracy (BAC) of 63% (p < 0.05) which is

defined as: Sensitivity
Speci f icity , with sensitivity at 56.8%, specificity at 69.2% and accuracy

at 63.2% with no site corrections as well as with partial correlations between the

rsFC and site. The highest BAC was achieved with with the application of the

Gmask at 68% (p < 0.001) with sensitivity at 64.9%, specificity at 71.8% and

an accuracy of 68.4% (Figure 3.1). Out of 76 subjects, 13 subjects in the good

group were misclassified as being poor and 11 subjects in the poor group were

misclassified as being good social outcomers.
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FIGURE 3.1: Illustration of the rsFC classifier in application with the
Gmask in separating Good from Poor subjects based on their GF Social

scores

3.2.2 GF Role Results

The classifier achieved a BAC of 50% with sensitivity at 0%, specificity at 100%

and accuracy at 53.9% with no site corrections. With partial correlations be-

tween the rsFC and site BAC was 48.8% with sensitivity at 0%, specificity at

97.6% and accuracy at 52.6%. With the Gmask, the classifier achieved a BAC

of 49.6% with sensitivity at 11.4%, specificity at 87.8% and accuracy at 52.6%.

None of the classifiers were significant at p < 0.05.
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3.2.3 GAF Disability Results

The classifier achieved a BAC of 49.1% with sensitivity at 22.6%, specificity

at 75.6% and accuracy at 53.9% with no site corrections. With partial correla-

tions between the rsFC and site the BAC was 46.7%, sensitivity 0%, specificity

93.3% and accuracy 55.3%. Application of Gmask resulted in a BAC of 50%,

with sensitivity at 0.0%, specificity at 100% and accuracy at 59.2%. None of the

classifiers were significant at p < 0.05.

3.3 rsFC of the classifier

All 12720 features used for classification were sorted in order of their discrimi-

native power, and the top fifteen features were extracted. These are represented

in the Figure 3.2. The most predictive FC were found in between the parietal

and frontal areas in both hemispheres of the brain. The connectivities were

both intrahemispheric (N = 9) as well as interhemispheric (N = 6) and were

distributed across brain region (Table 3.2). The highest discriminative connec-

tivity was found between the IPL and vmPFC, followed by the angular gyrus

and dorsal frontal cortex (dFC). The FC of the precuneus and dorsolateral pre-

frontal cortex (dlPFC) was the only long range connectivity amongst the top

fifteen FC. Other than the fronto-parietal and occipto-frontal connections, the

IPL with the inferior temporal cortex and the temporal cortex with the anterior

insula have shown also as most predictive features. The mean weights of the

15 functional connectivities for the two groups are also displayed in Table 3.2
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TABLE 3.2: List of the top 15 features, their mean feature weights and
corresponding mean correlations between ROIs for Good and Poor out-

comers

Region 1 Region 2 Mean feature weight Mean correlation (Good) Mean correlation (Poor)
R Inferior parietal lobule R Ventral medial prefrontal cortex -0.504 -0.084 -0.037
L Inferior parietal lobule L Ventral medial prefrontal cortex 0.456 -0.217 -0.142
R Angular gyrus L Dorsal frontal cortex 0.403 -0.183 -0.071
R Angular gyrus L Dorsal frontal cortex 0.402 -0.01 0.139
L Inferior parietal lobule L Inferior temporal 0.388 -0.145 -0.014
L Angular gyrus L Inferior parietal lobule 0.388 0.192 0.332
L Angular gyrus R Dorsal frontal cortex 0.382 0.054 0.201
R Angular gyrus R Ventral medial prefrontal cortex 0.364 0.081 0.201
R Inferior parietal lobule L Frontal 0.355 0.205 0.208
L Precuneus L Dorsolateral prefrontal cortex 0.349 -0.086 0.025
R Inferior parietal sulcus R Frontal 0.338 0.114 0.205
R Temporal R Anterior insula 0.335 -0.009 0.1
R Inferior parietal lobule L Medial prefrontal cortex 0.328 -0.131 -0.026
R Inferior parietal lobule R Ventral medial prefrontal cortex 0.323 -0.103 -0.044
R Angular gyrus L Dorsal frontal cortex 0.317 0.130 0.287

FIGURE 3.2: Illustration of the top 15 functional connectivities with the
highest discriminative power to classify Good and Poor social outcome
in CHR subjects. Visualized using BrainNetViewer by Xia et al., (2013)
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FIGURE 3.3: A graphic representation of the 15 most discriminative
functional connectivities in descending order for both Good and Poor

social outcome CHR subjects.

3.4 Correlation of decision scores and PANSS

The PANSS negative, positive and general scores were correlated with the deci-

sion scores obtained from the GF Social classifier (Table 3.3). PANSS Total with

the poor group was trending towards significance (r (74) = 0.645, p = 0.076). No

other significant correlations were found.

TABLE 3.3: Results of correlating the rsFC classifier decision scores
with the Good and Poor social outcome groups PANSS scores.

Good Poor

PANSS Negative p = 0.975
r = 0.005

p = 0.457
r = 0.123

PANSS Positive p = 0.646
r = -0.078

p = 0.619
r = -0.082

PANSS General p = 0.994
r = 0.001

p = 0.565
r = 0.095

PANSS Total p = 0.854
r = -0.031

p = 0.076
r = 0.645
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Discussion

4.1 Using a rsFC to separate CHR subjects based on

functional outcome

The main aim of the study was to use rsFC to predict functional outcome in

a cohort of CHR patients at FU. By using MVPA, our rsFC classifier was able

to separate CHR patients with good from poor social outcome with a BAC of

68% based on GF Social scores. his is an exciting finding because the GF So-

cial scale represents social functioning in general, but could be a proxy for all

the other aspects of social functioning such as management of interpersonal re-

lationships, social cognitive abilities including evaluating emotions, empathy

and theory of mind. Abilities and aspects of functioning that have time and

again been implicated in behaviour and well as brain changes in the psychosis

spectrum. Based on GF Role scores, the classifier was able to separate CHR

patients with good from poor role outcome with a highest BAC of 50%. Finally,

general functional outcome represented by GAF Disability scores had a BAC of

50%.

Previous research using these methods has focused on classification of patients
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from HC (Shen et al., 2010; Nieuwenhuis et al., 2012), or transition in CHR

patients (Koutsouleris et al., 2009) and differentiating between SZ patients from

those with other psychiatric disorders (Schnack et al., 2014). The few studies

on predicting outcome have achieved high correlations (De Wit et al., 2016) and

accuracies (Kambeitz-Ilankovic et al., 2015; Koutsouleris et al., 2016).

4.2 Predictive rsFC based on our classifier

Research employing univariate as well as MVPA methods has so far used var-

ious data modalities to predict functional outcome in psychosis spectrum pa-

tients. Previous studies have found negative symptoms (Cacciotti-Saija et al.,

2015), family history (Käkelä et al., 2014), duration and severity of illness (Diaz-

Caneja et al., 2015; Suttajit et al., 2015) and lower grey matter density in mPFC,

orbitofrontal cortex, anterior cingulate cortex (Reniers et al., 2017) as well as

functional connectivities in the DMN and SN (Crossley et al., 2009; Pelletier-

Baldelli et al., 2015) to predict functional outcome in SZ and CHR cohorts.

As detailed in Table 3.2, we identified a list of the highest predictive FC that

were able to discriminate between the two social outcome groups. The most

predictive out of the top fifteen features was the FC between the right IPL and

right vmPFC which are part of the frontoparietal network (FPN). The IPL was

involved in five out of the top fifteen FC and and previously, due to it’s role in

various aspects of cognition, was used during therapeutic application of tran-

scranial magnetic stimulation in SZ (Palaniyappan 2012). The interhemispheric

connectivity between the right angular gyrus and the left dFC along with the

intrahemispheric connectivity between the left precuneus left dlPFC are also
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part of the FPN. Previous studies on alterations in the rsFC of FPN has re-

ported reduced FC in SZ as compared to HC (Tu et al., 2013) though discordant

results have been found as well (Unschuld et al., 2014). In family members

of SZ patients the same pattern of varying alterations in FC of regions in the

FPN have been found (Chang et al., 2014). In CHR patients, impairments in

the FC of this network has been found to be related to social cognition (Lieber-

man., 2007), cognitive dysfunction and cognitive control (Peeters et al., 2015),

working memory (Schmidt et al., 2014), , executive functions and language

(Broome et al., 2009; Palaniyappan 2012). The FPN is theorized to be the link be-

tween different kinds of information processing such as between self oriented

memory processing and externally oriented information processing and hence

a disruption within the connectivities of the network might cause changes in

the information processing in the brain and subsequently cause problems in

other brain networks. This may be in line with the heterogeneous set of symp-

toms that SZ often presents with and may contribute to the identification of

schizophrenia endophenotypes and ultimately to the determination of SZ risk

genes (Liu et al., 2013). Finding a trace of this disruption in CHR patients pro-

vides evidence for a possible biomarker that may be able to detect CHR indi-

viduals who have poor social outcome.This can then be used to develop and

offer early individualized intervention to CHR patients in order to avoid hav-

ing a deterioration in functioning and prevent them from transitioning.

Another top feature implicated the intrahemispheric FC between the temporal

cortex and the anterior insula and these areas have been shown to be related

to the clinical symptoms present in SZ (Woodruff et al., 1997; Pang et al., 2017).

The anterior insula is also known to be involved in anticipating and evaluating

emotional stimuli (Lovero et al., 2009), and is likely also involved in empathy
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(Iacoboni and Dapretto 2006) both essential aspects of social functioning. It also

acts as a multimodal sensory integration unit (Pang et al., 2017) and alterations

in this functioning along with the temporal cortex which houses the primary

auditory cortex may lead to some aspects of the general psychopathology of

SZ (Pang et al., 2017). The FC between precuneus and dlPFC was also highly

discriminative of the groups. The dlPFC plays a role in context processing, ex-

ecutive processes (Delawalla et al., 2008; Zhou et al., 2015) and is also involved

in regulation of affective states (Philllips & Seidman, 2008). An unimpaired

processing of context coupled with higher order cognition allows an individ-

ual to make appropriate responses and communicate in an effective manner.

All of which are central aspects of social relationships. On the other hand, the

precuneus is involved in self representation (Lou et al., 2004) and retrieval of

episodic memory (Cavanna & Trimble, 2006), both integral parts of social inter-

action and social identity.

Most interhemispheric connectivities we found were located between the pari-

etal and frontal/prefrontal areas, which has also been shown in previous re-

search with SZ (Schlösser et al., 2003). Most aberrant functional connectivities

in psychosis involve interhemispheric connections (Guo et al., 2013) and have

also been found in unaffected siblings of patients with SZ (Guo et al., 2014).This

also goes hand in hand with research showing structural deficiencies of the cor-

pus callosum (Arnone et al., 2008; Collinson et al., 2014) and has been related

to severity of negative symptoms (Ribolsi et al., 2011). This along with our the

current results provides evidence that the ‘disconnectivity’found in SZ might

already be present in CHR patients.
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4.3 Decision scores and PANSS

Deterioration in social and occupational functioning are key characteristics of

schizophrenia (Bellack et al., 1990) and are amongst the most disabling and

treatment resistent aspects of the illness (Bellack et al., 2007). Over the past

years, a growing body of research is focusing on interventions in early spec-

trum psychosis in the hope of decreasing the adverse impact of schizophrenia

on functional outcome. A substantial amount of impairment in functioning

takes places in the early stages of psychosis and affects later social and oc-

cupational dysfunction (Niendam et al., 2009). Though most patients in the

CHR stage recover, one-thirds have poor functional outcome and many still

suffer from functioning deficits (Salokangas et al., 2013) and there is not enough

follow-up data to clarify whether patients improve long term despite not con-

verting (Brandizzi et al., 2015). A recently completed 15-year follow-up study

found that CHR individuals continued to develop symptoms years after initial

presentation (Fusar-Poli et al., 2013). The worsening of symptoms can lead to

an impairment various domains of functioning, the daily aspects of living such

as interactions with friends and family and employment.

Whilst elucidating a link between symptoms and social outcome, we found no

significant relationship between the decision scores of our classifier and PANSS

scores. Previous research on the other hand has found a relationship between

PANSS positive and negative symptoms and resting state activity (Sorg et al.,

2012; Dandash et al., 2013; Liu et al., 2018). In our study, the relationship be-

tween poor social outcomers and their PANSS summary score was trending

significance, and this could be because our group of poor outcomers are gener-

ally more symptomically impaired as compared to the good social outcomers.

Additionally, it could be that the modality is not yet able to pick specific rsFC
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social outcome signature between the groups and their symptom types. Al-

though, it is still able to give evidence that altered functional connectivities in

poor social outcome are associated with their general symptom severity. Lastly,

it is important to take into account that the previous studies mentioned did not

employ MVPA methods and also had different functional networks and FC. A

further look into the medication of the subjects, the severity and kind of symp-

toms and the duration of their illness (Larsen et al, 2000) might give us a better

outlook into understanding the lack of a relationship between PANSS and our

decision scores.

4.4 Limitations and evaluations

Our classifier was unable to discriminate groups based on GF Role which mea-

sures functioning during education, or at work and in the home. Role func-

tioning is found to be a variable vulnerability trait and is reflective of treatment

and environmental change which are heavily influenced by site (Cornblatt et

al., 2007). Low performance of the classifier could also reflect the modality’s

specificity for social functioning.

Our classifier also only had accuracies at chance or below chance level when

separating the groups using GAF disability, though previous research has found

good accuracies with the GAF scale in general (Koutsouleris et al., 2016). GAF

disability is a summary score consisting of both role and social aspects whereas

GF Social assesses the quality and quantity of peer relationships and inter-

actions, age appropriate intimate relationships, peer conflict and relationship

with family members and hence the focus is on social withdrawal and isola-

tion (Cascio et al., 2017). As mentioned earlier, it could be that our rsFC were
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perhaps able to only distinguish between the groups based on stark difference

in social aspects. Our threshold of 75 for GAF, though based on the sample

is not the threshold present for the general population (Scott et al., 2013) and

hence not representative or applicable.

It is also important to note that many functional outcome scores were taken

from varying time points and could have affected the classifier’s accuracy. Forty-

three subjects were excluded as outliers in the homogeneity check, this also

limits the generalizability of our classifier because the current sample repre-

sents a very small part of the general high risk patient population. Patients

that are unwell are more likely to have movements in their MR images either

because of medication or severity of symptoms. This is relevant to note because

movements might be a brain signature and exclusions due to this lead to severe

biases in the chosen sample.

Follow-up analyses could combine our current classifier with other modalities

as done by Cabral et al., (2016) and a deeper look into the role of co-morbid

illnesses in predicting outcome can be another possible path of research. Cor-

relating the decision scores with neurocognitive data will also be vital as previ-

ously neurocognitive domains such as attention, executive functioning, work-

ing memory and processing speed have been implicated in numerous studies

of functional outcome (Green et al., 2004; Niendam et al., 2007; Bowie et al.,

2008; Meyer et al., 2014). Lastly, incorporating more subjects will increase the

generalizablility and robustness of our classifier.
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4.5 Conclusion

In conclusion, using rsFC we were able to classify CHR subjects into good and

poor social outcome groups with an accuracy of 68%. The classifier used a site

correction method in form of a Gmask in order to control for scanner and sim-

ilar site effects. The most predictive connectivities included the FC between

fronto-parietal regions which included the IPL, angular gyrus and parts of the

prefrontal cortex. Most of the FC were short range and were distributed be-

tween and within the hemispheres. The FPN provides evidence for impair-

ments in cognitive control, social cognition and information processing which

are known to be impaired in SZ and CHR patients. The classifier was unable

to distinguish the groups based on GF Role and GAF Disability scores. There

were no significant correlations between the clinical symptoms as measured by

PANSS and the tendency as measured by decision scores of a subject to be clas-

sified as having a good or poor social outcome. Lastly, a larger sample size with

a balanced distribution between different sites, information regarding medica-

tion and illness duration and analyses combining additional modalities will be

able to provide a better outlook, robust biomarkers and a deeper understand-

ing of functional outcome in CHR cohorts. This would in turn help develop

early intervention programs focused on an individual’s need.
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Appendix

A.1 Participant Information

TABLE A.1: Distribution of subjects per site

Site name Combined subjects Good GF Social Poor GF Social
University of Munich 21 8 13
University of Basel 13 9 4
University of Milan 3 1 2
University of Cologne 12 7 5
University of Birmingham 10 7 3
University of Turku 10 2 8
University of Udine 7 3 4
Total 76 37 39

A.2 Clinical Assessments

A.2.1 Structured Interview for Prodromal Symptoms (SIPS)

SIPS is a structured diagnostic interview used for diagnosing prodromal symp-

toms and also includes operational definitions of the Criteria of Prodromal

Syndromes (COPS) and for Presence of Psychotic Syndrome or psychosis on-

set (POPS) (Miller et al., 2003). It measures 5 symptoms namely i) unusual
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TABLE A.2: List of observer rating and self rating questionnaires in
PRONIA

Observer Rating
Demographic and Biographic Data
Global Assessment of Functioning
Global Functioning Social / Role
Schizophrenia Proneness Instrument - Adult Version
Schizophrenia Proness Instrument-Adult Version Cognitive Disturbance
Structured Interview for Prodromal Syndromes Positive Items
Structured Interview for Prodromal Syndromes Negative and General Items
CAARMS Items
Positive and Negative Symptom Scale
Structured Clinical Interview for DSM IV 1 - Screening
Structured Clinical Interview for DSM IV 1 - Summary
Clinical High Risk Criteria
Functional Remission in General Schizophrenia
Ultra High Risk Criteria (Schizotypy/Genetic Risk)
Somatic state and health history
Substance Use
Treatment Documentation
Self Rating Questionnaires
Beck Depression Inventory - II
Bullying Scale
Coping Inventory for Stressful Situations
Level of Expressed Emotion Scale
Multidimensional Scale of Perceived Social Support
Resilience Scale for Adults
Social Phobia Inventory
The Everyday Discrimination Scale
WHO Quality Of Life - Short Version

thought content/delusions ii) suspisciousness/persecutory ideas iii) grandiose

ideas iv) perceptual abnormalities/hallucinations and v) disorganized commu-

nication.
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A.2.2 Beck’s Depression Inventory (BDI)

The BDI is a self-rating questionnaire consisting of 21 items that measures the

signs and symptoms of depression (Beck et al., 1961) such as i) sadness ii) suici-

dality iii) changes in appetite iv) loss of energy v) guilt feelings, among others.

The responses to these items are on a 4 point scale, where 0 is not present and

4 is severe.

A.2.3 Schizophrenia Proneness Instrument - Adult version

The Schizophrenia Proneness Instrument - Adult version (SPI-A) (Schultze-

Lutter et al., 2007) is based on the basic symptoms concept of psychosis by

Gerd Huber (1985). Basic symptoms include but are not limited to impair-

ments in dividing attention, disturbances in speech and perception (For a full

list please refer to Appendix table tbd). These symptoms are distinct from at-

tenuated or frank psychotic symptoms such as delusions, paranoid ideas, odd

thinking and speech, negative symptoms and formal thought disorders. These

symptoms are phenomenologically different from the patient’s original ’nor-

mal’ mental states and are also distinct from subtle disturbances described as

traits in those at genetic high-risk. Basic symptoms were thought to be the most

immediate psychopathological expression of the somatic changes underlying

the development of psychosis thus the term ‘basic’. (https://basicsymptoms.

org/materials/schizophrenia-proneness-instruments/)

https://basicsymptoms.org/materials/schizophrenia-proneness-instruments/
https://basicsymptoms.org/materials/schizophrenia-proneness-instruments/
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TABLE A.3: List of SPI-A Symptoms

SPI-A Symptoms

Inability to divide attention

Thought interference

Thought pressure

Thought blockages

Disturbance of receptive speech

Disturbance of expressive speech

Unstable ideas of reference

Disturbances of abstract thinking

Captivation of attention by details of the visual field
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A.3 SVM Results

FIGURE A.1: Illustration of the rsFC classifier in application with the
Gmask in separating Good vs Poor subjects based on their GF Role

scores

FIGURE A.2: Illustration of the rsFC classifier in application with the
Gmask in separating Good vs Poor subjects based on their GAF Dis-

ability scores
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